Home
Class 12
MATHS
Let S=sum(n=1)^(9999)1/((sqrt(n)+sqrt(n+...

Let `S=sum_(n=1)^(9999)1/((sqrt(n)+sqrt(n+1))(n4+n+1 4))` , then `S` equals ___________.

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

Let S= sum_(n=1)^(9999)1/((sqrt(n)+sqrt(n+1))(root4(n)+root4(n+1))) , then S equals ___________.

Let S=sum_(n=1)^(9999)1/((sqrt(n)+sqrt(n+1)) (^4sqrt(n)+^4sqrt(n+1)) , then S equals ___________.

Let S=Sigma_(n=1)^(999) (1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrtn+1)) , then S equals ___________.

Let S=sum_(n=1)^(9999)(1)/((sqrt(n+1))(root(4)(n)+root(4)(n+1))), then S equals

If S=sum_(n=1)^(9999)(1)/((sqrtn+sqrt(n+1))(root4(n)+root4(n+1))) , then the value of S is equal to

sum_(n=9)^(575)((1)/(n sqrt(n+1)+(n+1)sqrt(n)))=

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

If S(n)=sum_(k=1)^(n)(k)/(k^(4)+(1)/(4)), then (221S(10))/(10) is equal to: