Home
Class 12
MATHS
If In=int0^(pi//4)tan^n x dx , show t...

If `I_n=int_0^(pi//4)tan^n x dx` , show that `1/(I_2+I_4),1/(I_3+I_5),1/(I_4+I_6),1/(I_5+I_7),` form an A.P. Find the common difference of this progression.

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, show that (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),(1)/(I_(5)+I_(7)),... form an A.P. Find the common difference of this progression.

Let I_n=int_0^(pi/4)tan^nxdx , then 1/(I_2+I_4),1/(I_3+I_5), 1/(I_4+I_6), 1/(I_5+I_7)

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^(pi//4)tan^(n)xdx , then (1)/(I_(3)+I_(5)) is