Home
Class 12
MATHS
" 0.The value of "int(1)^(e)((tan^(-1)x)...

" 0.The value of "int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

The value of int (e^(tan^(-1)x)dx)/(1+x^(2)) is -

"int_(1)^(e)(1+log x)/(x)dx=

int_(1)^(e )(1)/(x sqrt(log x))dx=

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int_(1)^(e)(1+log x)/(x)dx=

The value of int_(1)^(e)(1+x^(2)ln x)/(x+x^(2)ln x)*dx is :

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to