Home
Class 8
MATHS
Usting the identity (a+ b)^(2) = (a^(2) ...

Usting the identity `(a+ b)^(2) = (a^(2) + 2ab +b^(2)),` evaluate:
`(609)^(2)`
`(725)^(2)`
`(491)^(2)`
`(289)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the squares of the given numbers using the identity \((a + b)^2 = a^2 + 2ab + b^2\), we will follow these steps for each number. ### Step-by-Step Solutions: 1. **Evaluate \((609)^2\)**: - Let \(a = 600\) and \(b = 9\). - Using the identity: \[ (609)^2 = (600 + 9)^2 = 600^2 + 2 \cdot 600 \cdot 9 + 9^2 \] - Calculate each term: - \(600^2 = 360000\) - \(2 \cdot 600 \cdot 9 = 10800\) - \(9^2 = 81\) - Now, add these values: \[ 360000 + 10800 + 81 = 370881 \] - Therefore, \((609)^2 = 370881\). 2. **Evaluate \((725)^2\)**: - Let \(a = 700\) and \(b = 25\). - Using the identity: \[ (725)^2 = (700 + 25)^2 = 700^2 + 2 \cdot 700 \cdot 25 + 25^2 \] - Calculate each term: - \(700^2 = 490000\) - \(2 \cdot 700 \cdot 25 = 35000\) - \(25^2 = 625\) - Now, add these values: \[ 490000 + 35000 + 625 = 525625 \] - Therefore, \((725)^2 = 525625\). 3. **Evaluate \((491)^2\)**: - Here, we can express \(491\) as \(500 - 9\). - Let \(a = 500\) and \(b = 9\). - Using the identity: \[ (491)^2 = (500 - 9)^2 = 500^2 - 2 \cdot 500 \cdot 9 + 9^2 \] - Calculate each term: - \(500^2 = 250000\) - \(-2 \cdot 500 \cdot 9 = -9000\) - \(9^2 = 81\) - Now, add these values: \[ 250000 - 9000 + 81 = 241081 \] - Therefore, \((491)^2 = 241081\). 4. **Evaluate \((289)^2\)**: - Let \(a = 200\) and \(b = 89\). - Using the identity: \[ (289)^2 = (200 + 89)^2 = 200^2 + 2 \cdot 200 \cdot 89 + 89^2 \] - Calculate each term: - \(200^2 = 40000\) - \(2 \cdot 200 \cdot 89 = 35600\) - \(89^2 = 7921\) - Now, add these values: \[ 40000 + 35600 + 7921 = 83521 \] - Therefore, \((289)^2 = 83521\). ### Final Results: - \((609)^2 = 370881\) - \((725)^2 = 525625\) - \((491)^2 = 241081\) - \((289)^2 = 83521\)
Promotional Banner

Topper's Solved these Questions

  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3A|4 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3B|21 Videos
  • SQUARES

    RS AGGARWAL|Exercise TEST PAPER-3|15 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER|19 Videos
  • THREE - DIMENSIONAL FIGURES

    RS AGGARWAL|Exercise EXERCISE 19 B|5 Videos

Similar Questions

Explore conceptually related problems

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 2 ax +1

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 6ax + 9

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(2) + 2 ab xy + b ^(2) y ^(2)

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). p ^(2) y ^(2) - 2py + 1

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). p ^(2) - 2p +1

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) a ^(2) x ^(3) + 23 abx ^(2) + b ^(2) x

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) 2x ^(3) + 24 x ^(2) + 72 x

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)