Home
Class 8
MATHS
Evaluate: sqrt (576)...

Evaluate:
`sqrt (576)`

A

34

B

44

C

24

D

54

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sqrt{576} \), we can follow these steps: ### Step 1: Prime Factorization of 576 We start by finding the prime factors of 576. 1. Divide 576 by 2 (the smallest prime number): \[ 576 \div 2 = 288 \] 2. Divide 288 by 2: \[ 288 \div 2 = 144 \] 3. Divide 144 by 2: \[ 144 \div 2 = 72 \] 4. Divide 72 by 2: \[ 72 \div 2 = 36 \] 5. Divide 36 by 2: \[ 36 \div 2 = 18 \] 6. Divide 18 by 2: \[ 18 \div 2 = 9 \] 7. Now, 9 is not divisible by 2, so we divide by the next prime number, which is 3: \[ 9 \div 3 = 3 \] 8. Finally, divide 3 by 3: \[ 3 \div 3 = 1 \] So, the prime factorization of 576 is: \[ 576 = 2^6 \times 3^2 \] ### Step 2: Pairing the Prime Factors Next, we will pair the prime factors to simplify the square root. - From \( 2^6 \), we can form 3 pairs of 2 (since \( 6 \div 2 = 3 \)). - From \( 3^2 \), we can form 1 pair of 3. Thus, we have: \[ \sqrt{576} = \sqrt{(2^2) \times (2^2) \times (2^2) \times (3^2)} \] ### Step 3: Taking the Square Root Now we take the square root of each pair: \[ \sqrt{(2^2)} = 2, \quad \sqrt{(2^2)} = 2, \quad \sqrt{(2^2)} = 2, \quad \sqrt{(3^2)} = 3 \] Now we multiply the results: \[ 2 \times 2 \times 2 \times 3 = 8 \times 3 = 24 \] ### Final Answer Thus, we have: \[ \sqrt{576} = 24 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3F|12 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3G|10 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3D|7 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER|19 Videos
  • THREE - DIMENSIONAL FIGURES

    RS AGGARWAL|Exercise EXERCISE 19 B|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ( sqrt(7) + sqrt(5) ) ( sqrt(5) - sqrt(7) )

Evaluate : ( sqrt(5) + sqrt(7 ) ) /( sqrt(5) - sqrt(7 ) )

Evaluate : ( sqrt(5) + sqrt(2) ) times ( sqrt(5) + sqrt(2) )

Evaluate : ( sqrt(5) + sqrt(3) )/ ( sqrt(5) - sqrt(3))

Evaluate : ( sqrt(7) + sqrt(2) ) times ( sqrt(3) + sqrt(8) )

Evaluate : ( sqrt(a) + sqrt(b) ) ( sqrt(a) - sqrt(b) )

Evaluate : sqrt(6)/( sqrt(2) + sqrt(3) )

Evaluate : sqrt(5)/ (sqrt(7) - sqrt(5)

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))