Home
Class 8
MATHS
Evaluate: sqrt ((625)/(729))...

Evaluate:
` sqrt ((625)/(729))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sqrt{\frac{625}{729}} \), we can follow these steps: ### Step 1: Factor the Numerator and Denominator First, we need to factor both the numerator (625) and the denominator (729). - **Numerator (625)**: - \( 625 = 25 \times 25 \) - \( 25 = 5 \times 5 \) - Therefore, \( 625 = 5^4 \). - **Denominator (729)**: - \( 729 = 27 \times 27 \) - \( 27 = 3 \times 3 \times 3 \) - Therefore, \( 729 = 3^6 \). ### Step 2: Rewrite the Expression Now we can rewrite the expression using the factors we found: \[ \sqrt{\frac{625}{729}} = \sqrt{\frac{5^4}{3^6}} \] ### Step 3: Apply the Square Root Using the property of square roots, we can separate the square root of the numerator and the denominator: \[ \sqrt{\frac{5^4}{3^6}} = \frac{\sqrt{5^4}}{\sqrt{3^6}} \] ### Step 4: Simplify the Square Roots Now we simplify each square root: - \( \sqrt{5^4} = 5^{4/2} = 5^2 = 25 \) - \( \sqrt{3^6} = 3^{6/2} = 3^3 = 27 \) ### Step 5: Combine the Results Now we can combine the results: \[ \frac{\sqrt{5^4}}{\sqrt{3^6}} = \frac{25}{27} \] ### Final Answer Thus, the evaluated result of \( \sqrt{\frac{625}{729}} \) is: \[ \frac{25}{27} \] ---
Promotional Banner

Topper's Solved these Questions

  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3H|19 Videos
  • SQUARES

    RS AGGARWAL|Exercise TEST PAPER-3|15 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3F|12 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER|19 Videos
  • THREE - DIMENSIONAL FIGURES

    RS AGGARWAL|Exercise EXERCISE 19 B|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate root3(729)

root3((-512)/(729))=?

Evaluate root3((729)/(1000))

Evaluate root3(64 xx 729)

Evaluate : sqrt(-16) + 3 sqrt(-25) + sqrt(-36) - sqrt(-625) .

The value of (10sqrt(625))/(sqrt(625)-5) is: