Home
Class 8
MATHS
(sqrt(288))/(sqrt (126))=?...

`(sqrt(288))/(sqrt (126))`=?

A

`(sqrt3)/(2)`

B

`(3) sqrt2)`

C

`3/2`

D

`1.49`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{288})/(\sqrt{126})\), we can follow these steps: ### Step 1: Prime Factorization First, we will find the prime factorization of both numbers, 288 and 126. **For 288:** - Divide by 2: \(288 \div 2 = 144\) - Divide by 2: \(144 \div 2 = 72\) - Divide by 2: \(72 \div 2 = 36\) - Divide by 2: \(36 \div 2 = 18\) - Divide by 2: \(18 \div 2 = 9\) - Divide by 3: \(9 \div 3 = 3\) - Divide by 3: \(3 \div 3 = 1\) So, the prime factorization of 288 is: \[ 288 = 2^5 \times 3^2 \] **For 126:** - Divide by 2: \(126 \div 2 = 63\) - Divide by 3: \(63 \div 3 = 21\) - Divide by 3: \(21 \div 3 = 7\) - Divide by 7: \(7 \div 7 = 1\) So, the prime factorization of 126 is: \[ 126 = 2^1 \times 3^2 \times 7^1 \] ### Step 2: Substitute the Prime Factors into the Square Roots Now we can substitute the prime factors back into the square roots: \[ \sqrt{288} = \sqrt{2^5 \times 3^2} \quad \text{and} \quad \sqrt{126} = \sqrt{2^1 \times 3^2 \times 7^1} \] ### Step 3: Simplify the Expression Now we can write the expression as: \[ \frac{\sqrt{288}}{\sqrt{126}} = \frac{\sqrt{2^5 \times 3^2}}{\sqrt{2^1 \times 3^2 \times 7^1}} = \frac{\sqrt{2^5} \cdot \sqrt{3^2}}{\sqrt{2^1} \cdot \sqrt{3^2} \cdot \sqrt{7^1}} \] ### Step 4: Simplify the Square Roots Now we can simplify the square roots: - \(\sqrt{2^5} = \sqrt{(2^4 \cdot 2)} = 2^2 \cdot \sqrt{2} = 4\sqrt{2}\) - \(\sqrt{3^2} = 3\) - \(\sqrt{2^1} = \sqrt{2}\) - \(\sqrt{7^1} = \sqrt{7}\) Substituting back, we have: \[ \frac{4\sqrt{2} \cdot 3}{\sqrt{2} \cdot 3 \cdot \sqrt{7}} = \frac{12\sqrt{2}}{\sqrt{2} \cdot 3 \cdot \sqrt{7}} \] ### Step 5: Cancel Common Terms Now we can cancel \(\sqrt{2}\) and \(3\): \[ = \frac{12}{3\sqrt{7}} = \frac{4}{\sqrt{7}} \] ### Step 6: Rationalize the Denominator (Optional) To rationalize the denominator, multiply the numerator and denominator by \(\sqrt{7}\): \[ \frac{4\sqrt{7}}{7} \] ### Final Answer Thus, the final answer is: \[ \frac{4\sqrt{7}}{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • SQUARES

    RS AGGARWAL|Exercise TEST PAPER-3|15 Videos
  • SQUARES

    RS AGGARWAL|Exercise EXERCISE 3G|10 Videos
  • RATIONAL NUMBERS

    RS AGGARWAL|Exercise TEST PAPER|19 Videos
  • THREE - DIMENSIONAL FIGURES

    RS AGGARWAL|Exercise EXERCISE 19 B|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sqrt(288))/(sqrt(128))

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

Find the value of x in the equation ((sqrt(324))/(sqrt(49)))((sqrt(676))/(sqrt(169)))((126)/(sqrt(81)))=x

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

sqrt((sqrt(2.88)+1.2)(sqrt(2.88-1.2)))=