Home
Class 12
MATHS
[" 27) The derivative of "tan^(-1)((sqrt...

[" 27) The derivative of "tan^(-1)((sqrt(1+x^(2)-1))/(x))" w.rt.tan' "^(-1)x" is "],[[" a) "0," b) "1," c) "2," d) "(1)/(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

Find the derivative of Tan^(-1)((sqrt(1+x^(2))-1)/(x)) .

The derivative of tan^(-1)((x)/(sqrt(1-x^(2)))) w. r.t is

The derivative of Tan ^(-1) "" (sqrt(1 + x ^(2))-1)/(x) w.r.t. Tan ^(-1) x is

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

Derivative of tan^(-1){(x)/(1+sqrt(1-x^(2)))}w.r.t.sin^(-1) is