Home
Class 11
MATHS
" What of "a^(2)+b^(2)+c^(2)+2abc=1...

" What of "a^(2)+b^(2)+c^(2)+2abc=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)a+cos^(-1)b+cos^(-1)c=pi then prove that a^(2)+b^(2)+c^(2)+2abc=1

Prove the followings : If cos^(-1)a+cos^(-1)b+cos^(-1)c=pi then a^(2)+b^(2)+c^(2)+2abc=1 .

What must be subtracted from a^(2)+b^(2)+c^(2)-3abc to get 2a^(2)-b^(2)-3c^(2)+abc ?

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2)) is equal to a+b+c( b )a^(2)b^(2)c^(2)2abc(d)4abc

If x=cy+bz,y=cx+az,z=bx+ay the value of a^(2)+b^(2)+c^(2)-1 is (A)abc(B) abc (C)2abc(D)-2abc

a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=2 a^(2) + b^(2) + c^(2)=6 find abc=?

Prove that a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Prove that: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

If a,b,c in R^(+), then the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) is equal to (a)abc (b)2abc (c)3abc (d)6abc

If a^(2)+b^(2)+c^(2)-ab-bc-ca=0backslash then |a:b:c is 1:1:2 b.1:1:1 c.1:2:1 d.2:1:1