Home
Class 10
MATHS
" (i) "[" 6.",2(3u-0)-v*(x-y)/(xy)=6,x!=...

" (i) "[" 6.",2(3u-0)-v*(x-y)/(xy)=6,x!=0,y!=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following system of equations: x+y=2xy,quad (x-y)/(xy)=6,x!=0,y!=0

The solution of the system of equations (2x+5y)/(xy)=6" and "(4x-5y)/(xy)+3=6 (where x = 0, y = 0) respectively is ______

Find the point of intersection of the straight lines : (i) 2x+3y-6=0 , 3x-2y-6=0 (ii) x=0 , 2x-y+3=0 (iii) (x)/(3)-(y)/(4)=0 , (x)/(2)+(y)/(3)=1

Solve for x and y : (xy )/(x + y ) = ( 6)/(5), (xy)/( y - x) = 6 (x ne 0, y ne 0 and x ne y ) .

Solve x-2y=6 3x-6y=0

The area of the square formed by thelines 6x^(2)-5xy-6y^(2)=0 and 6x^(2)-5xy-6y^(2)+x+5y-1=0 in sq.units is

If the pair of lines 6x^(2)-5xy-6y^(2)=0, 6x^(2)-5xy-6y^(2)+x+5y-1=0 form a square then area of square is

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0