Home
Class 12
MATHS
A solution of the equation tan^(-1)(1+...

A solution of the equation
`tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

A solution of the equation Tan^(-1)(1+x)-Tan^(-1)(x-1)=pi//2 is

Solution of tan ^(-1)(1+x)+tan ^(-1)(1-x)=(pi)/(2) is