Home
Class 11
MATHS
The value of ((log)2 24)/((log)(96)2)-((...

The value of `((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2)` is 3 (b) 0 (c) 2 (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: (log_(2)24)/(log_(96)2)-(log_(2)192)/(log_(12)2)=3

Prove that (log_(2)(24))/(log_(96)2)-(log_(2)(192))/(log_(12)2)=3

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is

(log)_(2)(log)_(2)(log)_(3)(log)_(3)27^(3) is 0 b.1 c.2 d.3

The value of (log)_(2)[(log)_(2){(log)_(4)((log)_(4)256^(4))}]backslash is 0 b.1 c.2d.4

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of (1+2(log_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

int_2^4((log)_x2-(((log)_2 2)^2)/(ln2))dx= 0 (b) 1 (c) 2 (d) 4

((log)_(5)5)((log)_(4)9)((log)_(3)2) is equal to 2 b.5 c.1 d.(3)/(2)