Home
Class 8
MATHS
" 2."x+y=a+b;ax-by=a^(2)-b^(2)...

" 2."x+y=a+b;ax-by=a^(2)-b^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by the method of substitution: x+y=a+b, ax-by=a^2-b^2

Solve: (x)/(a)+(y)/(b)=2,quad ax-by=a^(2)-b^(2)

Solve for xandy: (x)/(a)+(y)/(b)=2,ax-by=a^(2)-b^(2)

Solve for x and y by cross multiplication method x + y = a + b ax – by = a^(2) – b^(2)

The locus of the midpoints of the chords of the circle x^(2)+y^(2)-ax-by=0 which subtend a right angle at ((a)/(2),(b)/(2)) is ax+by=0ax+by=a^(2)=b^(2)x^(2)+y^(2)-ax-by+(a^(2)+b^(2))/(8)=0x^(2)+y^(2)-ax-by-(a^(2)+b^(2))/(8)=0

If 2a=b, the pair of equations ax+by=2a^(2)-3b^(2),x+2y=2a-6b possess

If a circle passes through the point (a, b) and cuts the circle x^2 + y^2 = 4 orthogonally, then the locus of its centre is (a) 2ax+2by-(a^(2)+b^(2)+4)=0 (b) 2ax+2by-(a^(2)-b^(2)+k^(2))=0 (c) x^(2)+y^(2)-3ax-4by+(a^(2)+b^(2)-k^(2))=0 (d) x^(2)+y^(2)-2ax-3by+(a^(2)-b^(2)-k^(2))=0

The value of y which satisfies (x)/(a)=(y)/(b) and ax+by=a^(2)+b^(2) is

(x)/(a)-(y)/(b)=0,ax+by=a^(2)+b^(2)