Home
Class 12
MATHS
L(x rarr0)((1)/(x))^(tan z)=...

L_(x rarr0)((1)/(x))^(tan z)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1)/(x))^(tan x)=

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

If lim_(x rarr0)((tan x)/(x))^((tan x)/(x-tan x) exists and equal to l , then which of the following is ( are ) correct?

lim_(x rarr0)(|x|)/(x)

lim_(x rarr0)((tan x)/(x))^(1/x)

lim_ (x rarr0) (1) / (x) [tan ^ (- 1) ((x + 1) / (2x + 1)) - (pi) / (4)] =?

lim_(x rarr0)(cot x-(1)/(x))/(x)

lim_(x rarr0)((sin x)/(x))^((1)/(x))

Lim_(x rarr0)(Tan x)/(x)

Lt_(x rarr0)(tan^(-1)x)/(x)