Home
Class 12
MATHS
y=sin^(-1)(2x sqrt(1-x^(2)))...

y=sin^(-1)(2x sqrt(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy/dx) in the following y=sin ^(-1)(2 x sqrt(1-x^2))

sin^(-1)x+sin^(-1)y=sin^(-1)(x sqrt(1-y^(2))+y sqrt(1-x^(2))) then find the area represented by the locus of point (x,y) if |x|<=1,|y|<=1

If y=sin^(-1)((2sqrt(x^(2)-1))/(x^(2))) , then find (dy)/(dx) .

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))