Home
Class 9
MATHS
[" 14.If the equations "x^(2)+ax+b=0quad...

[" 14.If the equations "x^(2)+ax+b=0quad " and "],[x^(2)+bx+a=0(a!=b)" have a common root "],[" then "a+b=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equations x^(2) - ax + b = 0 and x^(2) + bx - a = 0 have a common root, then

If x^(2) + ax + b = 0, x^(2) + bx + a = 0 ( a != 0 ) have a common root, then a + b =

If x^(2) + ax + b = 0, x^(2) + bx + a = 0 ( a != 0 ) have a common root, then a + b =

If the quadratic equation x^(2) +ax +b =0 and x^(2) +bx +a =0 (a ne b) have a common root, the find the numeical value of a +b.

If the equation : x^(2 ) + 2x +3=0 and ax^(2) +bx+ c=0 a,b,c in R have a common root then a: b: c is :

If x^(2)+ax+b=0 and x^(2)+bx+a=0,(a ne b) have a common root, then a+b is equal to