Home
Class 11
MATHS
int((pi)/(4))^((pi)/(2))cos2x*log sin xd...

int_((pi)/(4))^((pi)/(2))cos2x*log sin xdx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))cos2x log sin xdx

Evaluate int_(-(pi)/(2))^((pi)/(2))x^(2)sin xdx

int_((-pi)/(4))^((pi)/(2))e^(-x)sin xdx=

int_(pi//4)^(pi//2) cos 2 x log sin x " " dx=

int_(-(pi)/(4))^((pi)/(4))(2 pi+sin2 pi x)/(2-cos2x)dx

The value of the integral int_(-(pi)/(2))^((pi)/(2))cos^(4)x(1+log((2+sin x)/(2-sin x)))dx is

int_(-(pi)/(2))^((pi)/(2))(cos xdx)/(1+2[sin^(-1)(sin x)]) is (where [1]

int_(0)^( pi)cos2x*log(sin x)dx

int _ (- (pi) / (2)) ^ ((pi) / (2)) cos x sin ^ (4) xdx =

Prove that, int_(-(pi)/(2))^((pi)/(2))cos^(3)xdx=2int_(0)^((pi)/(2))cos^(3)xdx , hence, find the value of int_(-(pi)/(2))^((pi)/(2))cos^(3)xdx