Home
Class 12
MATHS
[" 8.The value of "[(bar(a)+2bar(b)-bar(...

[" 8.The value of "[(bar(a)+2bar(b)-bar(c)),(bar(a)-bar(b)),(bar(a)-bar(b)-bar(c))]],[" is equal to the box product "]

Promotional Banner

Similar Questions

Explore conceptually related problems

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

Show that (bar(a)+bar(b)) . [(bar(b)+bar(c)) xx (bar(c )+bar(a))] = 2[bar(a)bar(b)bar(c )] .

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a), bar(b), bar(c) are non coplanar, show that the vectors bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c) are linearly independent.

If (bar(a)xxbar(b))(bar(c)xxbar(b))+(bar(a).bar(b))(bar(b)*bar(c))=lambda(bar(a).bar(c)) then lambda=