Home
Class 11
MATHS
A line of slope lambda(0 lt lambda lt 1)...

A line of slope `lambda(0 lt lambda lt 1)` touches the parabola `y+3x^2=0` at `P`. If `S` is the focus and `M` is the foot of the perpendicular of directrix from `P` , then `tan/_M P S` equals (A) `2lambda` (B) `(2lambda)/(-1+lambda^2)` (C) `(1-lambda^2)/(1+lambda^2)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+1 = 0 touches the parabola y^(2) = lambda x , then lambda is equal to

If the sum of the slopes of the normal from a a point P to the hyperbola xy=c^(2) is equal to lambda(lambda in R^(+)), then the locus of point P is (a) x^(2)=lambda c^(2)( b) y^(2)=lambda c^(2)( c) xy=lambda c^(2)( d) none of these

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If the straight line 3x+4y+1=0 is a normal to the parabola y^(2)+lambda x=0 ,then distance between focus and directrix of the parabola is

int_ (lambda =) (dx) / (sqrt (1-tan ^ (2) x)) = (1) / (lambda) sin ^ (- 1) (lambda sin x) + C, then

The circle x^(2)+y^(2)+2 lambda x=0,lambda in R, touches the parabola y^(2)=4x externally.Then,lambda>0 (b) lambda 1(d) none of these

If y=mx+c be a tangent to the hyperbola (x^(2))/(lambda^(2))-(y^(2))/((lambda^(3)+lambda^(2)+lambda)^(2))=1,(lambda!=0), then

For any lambda in R, the locus x^(2)+y^(2)-2 lambda x-2 lambda y+lambda^(2)=0 touches the line

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

lim_(x->pi)(2-lambda/x)^(2tan((pipi)/(2lambda)))=1/e, then lambda is equal to -