Home
Class 14
MATHS
" If "cos(alpha+beta)=0," then "sin(alph...

" If "cos(alpha+beta)=0," then "sin(alpha-beta)" can be reduced to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

If cot(alpha+beta)=0, then sin(alpha+2 beta) can be (a)-sin alpha(b)sin beta(c)cos alpha(d)cos beta

If 0 le alpha beta le 90^@ such that cos (alpha - beta) = 1 , then what is sin alpha - sin beta + cos alpha - cos beta equal to ?

If " "cos(alpha - beta) + 1 = 0," show that ", cosalpha + cos beta = 0 " and " sin alpha + sin beta = 0.

If cos(alpha-beta)+1=0, show that cos alpha+cos beta=0 and sin alpha+sin beta=0

Find the value of f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)|

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

(i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof