Home
Class 12
MATHS
Equations of two straight lines are xcos...

Equations of two straight lines are `xcos alpha + ysin alpha = p and xcos beta + ysin beta = p'.` Show that the area of the quadrilateral formed by the two lines and the perpendiculars drawn from the origin to the lines is `1/(2sin (B-alpha)) [2pp'-(p2 +p'2) cos(alpha-beta)}.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Equations of two straight lines are x cos alpha+y sin alpha=p and x cos beta+y sin beta=p' Show that the area of the quadrilateral formed by the two lines and the perpendiculars drawn from the origin to the lines is (1)/(2sin(B-alpha))[2pp'-(p2+p'2)cos(alpha-beta)}

The lines x cos alpha + y sin alpha = p_1 and x cos beta + y sin beta = p_2 will be perpendicular, if :

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The angle between the lines x cos alpha+y sin alpha=p_(1) and x cos beta+y sin beta=p_(2) when alpha>beta

The angle between the lines x cos alpha+y sin alpha=p_(1) and x cos beta +y sin beta=p_(2) where alpha gt beta is

The angle between the lines x cos alpha + y sin alpha=p_(1) and x cos beta+y sin beta=p_(2) where alpha gt beta is

The lines x cos alpha+y sin alpha=P_(1) and x cos beta+y sin beta=P_(2) will be perpendicular,if :