Home
Class 12
MATHS
Prove that (d)/(dx)("cosec"^(-1)x)=(-1)/...

Prove that `(d)/(dx)("cosec"^(-1)x)=(-1)/(|x|sqrt(x^(2)-1))`, where `x in R-[-1,1]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)(cos^(-1)x)=(-1)/(sqrt(1-x^(2)) , where x in [-1,1].

Prove that (d)/(dx)(cos^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

(d)/(dx)[cosec^(-1)((sqrt(2))/(x-sqrt(1-x^(2))))]=

(d)/(dx)csc^(-1)((1+x^(2))/(2x))

(d)/(dx)(sec^(-1)x+"cosec"^(-1)x)=0

Find (d)/(dx) ["cosec"^(-1)x]_(x= -2)

d/(dx)[cosec^-1((1+x^2)/(2x))]=

(d)/(dx)(sec^(2)x*csc^(2)x)=

(d)/(dx)["cosec"^(-1)((1+x^(2))/(2x))] is :