Home
Class 12
MATHS
The value of sum(n=0)^(100)i^(n!) equals...

The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`

A

`-1`

B

`i`

C

`2i+95`

D

`97+i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{n=0}^{100} i^{n!} \] where \( i = \sqrt{-1} \). ### Step 1: Understand the powers of \( i \) The powers of \( i \) cycle every four terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and the cycle repeats) ### Step 2: Determine the values of \( n! \) modulo 4 We need to find \( n! \mod 4 \) for \( n = 0, 1, 2, \ldots, 100 \). - For \( n = 0 \): \( 0! = 1 \) → \( 1 \mod 4 = 1 \) - For \( n = 1 \): \( 1! = 1 \) → \( 1 \mod 4 = 1 \) - For \( n = 2 \): \( 2! = 2 \) → \( 2 \mod 4 = 2 \) - For \( n = 3 \): \( 3! = 6 \) → \( 6 \mod 4 = 2 \) - For \( n \geq 4 \): \( n! \) will always be divisible by \( 4 \) (since \( 4! = 24 \) and higher factorials include \( 4 \) as a factor) → \( n! \mod 4 = 0 \) ### Step 3: Calculate \( i^{n!} \) for each \( n \) Now we can evaluate \( i^{n!} \) for \( n = 0, 1, 2, 3, \ldots, 100 \): - For \( n = 0 \): \( i^{0!} = i^1 = i \) - For \( n = 1 \): \( i^{1!} = i^1 = i \) - For \( n = 2 \): \( i^{2!} = i^2 = -1 \) - For \( n = 3 \): \( i^{3!} = i^6 = (i^4)(i^2) = 1 \cdot (-1) = -1 \) - For \( n \geq 4 \): \( i^{n!} = i^0 = 1 \) ### Step 4: Count the contributions to the summation Now, we can sum these contributions: - For \( n = 0 \): contributes \( i \) - For \( n = 1 \): contributes \( i \) - For \( n = 2 \): contributes \( -1 \) - For \( n = 3 \): contributes \( -1 \) - For \( n = 4 \) to \( n = 100 \): contributes \( 1 \) for each of the 97 terms (from \( n = 4 \) to \( n = 100 \)) ### Step 5: Calculate the total sum Now we can sum everything: \[ \text{Total} = i + i - 1 - 1 + 97 \cdot 1 \] \[ = 2i - 2 + 97 \] \[ = 95 + 2i \] ### Final Result Thus, the value of the summation is: \[ \boxed{95 + 2i} \]

To solve the problem, we need to evaluate the summation: \[ \sum_{n=0}^{100} i^{n!} \] where \( i = \sqrt{-1} \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(10)i^(n) equals

Find the value of sum_(n=0)^(100)i^(n!), where i=sqrt(-1)

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)), where i=sqrt(-1) equals (A)i(B)i-1(C)-i(D)0

Find he value of sum_(r=1)^(4n+7)backslash i^(r) where,i=sqrt(-1)

sum_(i=0)^(n)2^(i) is equal to

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

The valule of sum_(n=1)^(8)(i^(n)), where i=sqrt(-1)

The value of the sums sum_(n=1)^(13)(i^(n)+i^(n+1)) where i=sqrt(-)1 is : (a) i(b)i-1(c)-i(d)

CENGAGE-COMPLEX NUMBERS-Single correct Answer
  1. The value of sum(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

    Text Solution

    |

  2. Suppose n is a natural number such that |i + 2i^2 + 3i^3 +...... + ni...

    Text Solution

    |

  3. Let i=sqrt(-1) Define a sequence of complex number by z1=0, z(n+1) = (...

    Text Solution

    |

  4. The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sq...

    Text Solution

    |

  5. a ,b ,c are positive real numbers forming a G.P. ILf a x 62+2b x+c=0a ...

    Text Solution

    |

  6. The equation Z^(3)+iZ-1=0 has

    Text Solution

    |

  7. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  8. If Z^5 is a non-real complex number, then find the minimum value of (I...

    Text Solution

    |

  9. For any complex numbers z1,z2 and z3, z3 Im(bar(z2)z3) +z2Im(bar(z3)z1...

    Text Solution

    |

  10. The modulus and amplitude of (1+2i)/(1-(1-i)^(2)) are

    Text Solution

    |

  11. If the argument of (z-a)(barz-b) is equal to that (((sqrt(3)+i)(1+sqrt...

    Text Solution

    |

  12. If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(ba...

    Text Solution

    |

  13. If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma, then (...

    Text Solution

    |

  14. The least value of |z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2) occurs when ...

    Text Solution

    |

  15. The roots of the equation x^(4)-2x^(2)+4=0 are the vertices of a :

    Text Solution

    |

  16. If z(1), z(2) are complex numbers such that Re(z(1))=|z(1)-2|, Re(z(2)...

    Text Solution

    |

  17. If z=e^((2pi i)/5), then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4...

    Text Solution

    |

  18. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  19. Let z be a complex number satisfying |z+16|=4|z+1|. Then

    Text Solution

    |

  20. If |z|=1 and z'=(1+z^(2))/(z), then

    Text Solution

    |