Home
Class 12
MATHS
For any complex numbers z1,z2 and z3, z3...

For any complex numbers `z_1,z_2 and z_3, z_3 Im(bar(z_2)z_3) +z_2Im(bar(z_3)z_1) + z_1 Im(bar(z_1)z_2)` is

A

`0`

B

`z_(1)+z_(2)+z_(3)`

C

`z_(1)z_(2)z_(3)`

D

`((z_(1)+z_(2)+z_(3))/(z_(1)z_(2)z_(3)))`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `z_(1)((barz_(2)z_(3)-z_(2)barz_(3))/(2i))+z_(2)((barz_(3)z_(1)-z_(3)barz_(1))/(2i))+z_(3)((barz_(1)z_(2)-z_(1)barz_(2))/(2i))=(1)/(2i)xx0=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

For any complex numbers z_(1),z_(2) and z_(3),z_(3)Im(bar(z_(2))z_(3))+z_(2)Im(bar(z_(3))z_(1))+z_(1)Im(bar(z_(1))z_(2)) is

For any three complex numbers z_1, z_2 and z_3 , prove that z_1 lm (bar(z_2) z_3)+ z_2 lm (bar(z_3) z_1) + z_3lm(bar(z_1) z_2)=0 .

For any two non zero complex numbers z_(1) and z_(2) if z_(1)bar(z)_(2)+z_(2)bar(z)_(1)=0 then amp(z_(1))-amp(z_(2)) is

For two unimodular complex numbers z_1 and z_2, then [(bar z_1,-z_2),(bar z_2,z_1)]^-1[(z_1,z_2),(bar (-z_2),bar z_1)]^-1 is equal to

For two unimobular complex numbers z_(1) and z_(2) , find [(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)

Let z_(1), z_(2), z_(3) be three non-zero complex numbers such that z_(1) bar(z)_(2) = z_(2) bar(z)_(3) = z_(3) bar(z)_(1) , then z_(1), z_(2), z_(3)

For any three complex numbers z_(1),z_(2),z_(3) , if Delta=|{:(1,z_(1),bar(z_(1))),(1,z_(2),bar(z_(2))),(1,z_(3),bar(z_(3))):}| , then

For any complex number z prove that |Re(z)|+|Im(z)|<=sqrt(2)|z|

Im ((1) / (z_ (1) bar (z) _ (1)))

CENGAGE-COMPLEX NUMBERS-Single correct Answer
  1. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  2. If Z^5 is a non-real complex number, then find the minimum value of (I...

    Text Solution

    |

  3. For any complex numbers z1,z2 and z3, z3 Im(bar(z2)z3) +z2Im(bar(z3)z1...

    Text Solution

    |

  4. The modulus and amplitude of (1+2i)/(1-(1-i)^(2)) are

    Text Solution

    |

  5. If the argument of (z-a)(barz-b) is equal to that (((sqrt(3)+i)(1+sqrt...

    Text Solution

    |

  6. If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(ba...

    Text Solution

    |

  7. If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma, then (...

    Text Solution

    |

  8. The least value of |z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2) occurs when ...

    Text Solution

    |

  9. The roots of the equation x^(4)-2x^(2)+4=0 are the vertices of a :

    Text Solution

    |

  10. If z(1), z(2) are complex numbers such that Re(z(1))=|z(1)-2|, Re(z(2)...

    Text Solution

    |

  11. If z=e^((2pi i)/5), then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4...

    Text Solution

    |

  12. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  13. Let z be a complex number satisfying |z+16|=4|z+1|. Then

    Text Solution

    |

  14. If |z|=1 and z'=(1+z^(2))/(z), then

    Text Solution

    |

  15. a, b,c are three complex numbers on the unit circle |z|=1, such that a...

    Text Solution

    |

  16. If |z1|=|z2|=|z3|=1 then value of |z1-z3|^2+|z3-z1|^2+|z1-z2|^2 cannot...

    Text Solution

    |

  17. Number of ordered pairs (s), (a,b) of real numbers such that (a+ib)^(2...

    Text Solution

    |

  18. The region represented by the inequality |2z-3i|<|3z-2i| is

    Text Solution

    |

  19. If omega is any complex number such that z omega=|z|^(2) and |z-barz|+...

    Text Solution

    |

  20. If az^2+bz+1=0, where a,b in C, |a|=1/2 and have a root alpha such tha...

    Text Solution

    |