Home
Class 12
MATHS
If a complex number z satisfies |z|^(2)+...

If a complex number `z` satisfies `|z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(barz)/(z))-16=0`, then the maximum value of `|z|` is

A

`sqrt(6)+1`

B

`4`

C

`2+sqrt(6)`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ |z|^2 + \frac{4}{|z|^2} - 2\left(\frac{z}{\bar{z}} + \frac{\bar{z}}{z}\right) - 16 = 0 \] Let \( r = |z| \). Then, we can express the equation in terms of \( r \). ### Step 2: Simplify the terms We know that: \[ \frac{z}{\bar{z}} = \frac{z}{|z|^2} \cdot |z|^2 = e^{i\theta} \quad \text{(where \( z = re^{i\theta} \))} \] Thus, we have: \[ \frac{z}{\bar{z}} + \frac{\bar{z}}{z} = e^{i\theta} + e^{-i\theta} = 2\cos(\theta) \] Substituting this back into the equation gives: \[ r^2 + \frac{4}{r^2} - 4\cos(\theta) - 16 = 0 \] ### Step 3: Multiply through by \( r^2 \) To eliminate the fraction, we multiply the entire equation by \( r^2 \): \[ r^4 + 4 - 4r^2\cos(\theta) - 16r^2 = 0 \] Rearranging gives: \[ r^4 - 4r^2\cos(\theta) - 16r^2 + 4 = 0 \] ### Step 4: Rearranging the quadratic equation We can factor out \( r^2 \): \[ r^4 - (4\cos(\theta) + 16)r^2 + 4 = 0 \] Let \( x = r^2 \). The equation becomes: \[ x^2 - (4\cos(\theta) + 16)x + 4 = 0 \] ### Step 5: Use the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{4\cos(\theta) + 16 \pm \sqrt{(4\cos(\theta) + 16)^2 - 16}}{2} \] ### Step 6: Simplifying the discriminant Calculating the discriminant: \[ (4\cos(\theta) + 16)^2 - 16 = 16\cos^2(\theta) + 128\cos(\theta) + 256 - 16 = 16\cos^2(\theta) + 128\cos(\theta) + 240 \] ### Step 7: Maximizing \( r^2 \) To find the maximum value of \( r \), we need to maximize \( \cos(\theta) \). The maximum value of \( \cos(\theta) \) is 1. Substituting \( \cos(\theta) = 1 \): \[ x = \frac{4(1) + 16 \pm \sqrt{(4(1) + 16)^2 - 16}}{2} \] This simplifies to: \[ x = \frac{20 \pm \sqrt{400 - 16}}{2} = \frac{20 \pm \sqrt{384}}{2} \] Calculating \( \sqrt{384} = 8\sqrt{6} \): \[ x = \frac{20 \pm 8\sqrt{6}}{2} = 10 \pm 4\sqrt{6} \] ### Step 8: Finding \( r \) Since \( r^2 = 10 + 4\sqrt{6} \) gives the maximum value: \[ r = \sqrt{10 + 4\sqrt{6}} \] ### Step 9: Final simplification We can express \( r \) as: \[ r = 2 + \sqrt{6} \] ### Conclusion Thus, the maximum value of \( |z| \) is: \[ \boxed{2 + \sqrt{6}} \]

To solve the equation given in the problem, we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ |z|^2 + \frac{4}{|z|^2} - 2\left(\frac{z}{\bar{z}} + \frac{\bar{z}}{z}\right) - 16 = 0 \] Let \( r = |z| \). Then, we can express the equation in terms of \( r \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If z satisfies the equation ((z-2)/(z+2))((barz-2)/(barz+2))=1 , then minimum value of |z| is equal to :

Find the complex number z if z^2+barz =0

Find all complex numbers satisfying barz = z^2 .

If complex number z(z!=2) satisfies the equation z^(2)=4z+|z|^(2)+(16)/(|z|^(3)) ,then the value of |z|^(4) is

Let z be a complex number satisfying |z+16|=4|z+1| . Then

If z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 then the set of possible values of z is

If all the complex numbers z such that |z|=1 and |(z)/(barz)+(barz)/(z)|=1 vertices of a polygon then the area of the polygon is K so that [2K] , ( [.] is GIF) equals

Non-real complex number z satisfying the equation z^(3)+2z^(2)+3z+2=0 are

CENGAGE-COMPLEX NUMBERS-Single correct Answer
  1. The modulus and amplitude of (1+2i)/(1-(1-i)^(2)) are

    Text Solution

    |

  2. If the argument of (z-a)(barz-b) is equal to that (((sqrt(3)+i)(1+sqrt...

    Text Solution

    |

  3. If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(ba...

    Text Solution

    |

  4. If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma, then (...

    Text Solution

    |

  5. The least value of |z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2) occurs when ...

    Text Solution

    |

  6. The roots of the equation x^(4)-2x^(2)+4=0 are the vertices of a :

    Text Solution

    |

  7. If z(1), z(2) are complex numbers such that Re(z(1))=|z(1)-2|, Re(z(2)...

    Text Solution

    |

  8. If z=e^((2pi i)/5), then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4...

    Text Solution

    |

  9. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  10. Let z be a complex number satisfying |z+16|=4|z+1|. Then

    Text Solution

    |

  11. If |z|=1 and z'=(1+z^(2))/(z), then

    Text Solution

    |

  12. a, b,c are three complex numbers on the unit circle |z|=1, such that a...

    Text Solution

    |

  13. If |z1|=|z2|=|z3|=1 then value of |z1-z3|^2+|z3-z1|^2+|z1-z2|^2 cannot...

    Text Solution

    |

  14. Number of ordered pairs (s), (a,b) of real numbers such that (a+ib)^(2...

    Text Solution

    |

  15. The region represented by the inequality |2z-3i|<|3z-2i| is

    Text Solution

    |

  16. If omega is any complex number such that z omega=|z|^(2) and |z-barz|+...

    Text Solution

    |

  17. If az^2+bz+1=0, where a,b in C, |a|=1/2 and have a root alpha such tha...

    Text Solution

    |

  18. Let p and q are complex numbers such that |p|+|q| lt 1. If z(1) and z(...

    Text Solution

    |

  19. If z and w are two complex numbers simultaneously satisfying te equati...

    Text Solution

    |

  20. All complex numbers 'z' which satisfy the relation |z-|z+1||=|z+|z-1||...

    Text Solution

    |