Home
Class 12
MATHS
If cos alpha+cos beta+cos gamma=0=sin al...

If `cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma`, then `(sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma))` is equal to

A

`1`

B

`-1`

C

`3`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) 2. \( \sin \alpha + \sin \beta + \sin \gamma = 0 \) We need to find the value of: \[ \frac{\sin 3\alpha + \sin 3\beta + \sin 3\gamma}{\sin(\alpha + \beta + \gamma)} \] ### Step 1: Use Complex Numbers We can express the angles in terms of complex exponentials. Let: \[ A = e^{i\alpha}, \quad B = e^{i\beta}, \quad C = e^{i\gamma} \] Then, we have: \[ A + B + C = e^{i\alpha} + e^{i\beta} + e^{i\gamma} \] ### Step 2: Analyze the Sums From the given conditions, we know: \[ \cos \alpha + \cos \beta + \cos \gamma = \text{Re}(A + B + C) = 0 \] \[ \sin \alpha + \sin \beta + \sin \gamma = \text{Im}(A + B + C) = 0 \] Thus, \( A + B + C = 0 \). ### Step 3: Use the Identity for Cubes Using the identity for the sum of cubes, we have: \[ A^3 + B^3 + C^3 - 3ABC = (A + B + C)(A^2 + B^2 + C^2 - AB - AC - BC) \] Since \( A + B + C = 0 \), we can simplify this to: \[ A^3 + B^3 + C^3 = 3ABC \] ### Step 4: Express \( \sin 3\alpha + \sin 3\beta + \sin 3\gamma \) Using the exponential form, we can express: \[ A^3 = e^{3i\alpha}, \quad B^3 = e^{3i\beta}, \quad C^3 = e^{3i\gamma} \] Thus: \[ \sin 3\alpha + \sin 3\beta + \sin 3\gamma = \text{Im}(A^3 + B^3 + C^3) = \text{Im}(3ABC) \] ### Step 5: Calculate \( ABC \) Since \( A = e^{i\alpha}, B = e^{i\beta}, C = e^{i\gamma} \): \[ ABC = e^{i(\alpha + \beta + \gamma)} \] ### Step 6: Substitute Back Now we can substitute back into our expression: \[ \sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin(\alpha + \beta + \gamma) \] ### Step 7: Final Expression Now we substitute this into our original expression: \[ \frac{\sin 3\alpha + \sin 3\beta + \sin 3\gamma}{\sin(\alpha + \beta + \gamma)} = \frac{3 \sin(\alpha + \beta + \gamma)}{\sin(\alpha + \beta + \gamma)} = 3 \] ### Conclusion Thus, the final answer is: \[ \boxed{3} \]

To solve the problem, we start with the given conditions: 1. \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) 2. \( \sin \alpha + \sin \beta + \sin \gamma = 0 \) We need to find the value of: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then x^(sin(2 alpha-beta-gamma)*x^(sin(2 beta-gamma-alpha)))*x ^(sin(2 gamma-alpha-beta)) is

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

cos alpha+cos beta+cos gamma=0sin alpha+sin beta+sin gamma=0 then the value of sin^(4)alpha+sin^(4)beta+sin^(4)gamma

If cos alpha+2cos beta+3cos gamma=sin alpha+2sin beta+3sin gamma=0 then the value of sin3 alpha+8sin3 beta+27sin3 gamma is sin(a+b+gamma)b.3sin(alpha+beta+gamma) c.18sin(alpha+beta+gamma) d.sin(alpha+2 beta+3)

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

If sinalpha+sinbeta+singamma=cosalpha+cosbeta+cosgamma=0, then (A) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma) (B) cos 3alpha+cos3beta+cos3gamma=0 (C) sin3alpha+sin3beta+sin3gamma=0 (D) sin3alpha+sin3beta+sin3gamma= 3sin(alpha+beta+gamma)

If cos alpha + cos beta+ cos gamma = 0 = sin alpha + sin beta+sin gamma show that sin^(2)alpha + sin^(2) beta + sin^(2) gamma =cos^(2)alpha +cos^(2) beta + cos^(2) gamma =3/2

If (cos alpha+cos beta+cos gamma)/(c os(alpha+beta+gamma))=(sin alpha+sin beta+sin gamma)/(sin(alpha+beta+gamma))=2.and cos(alpha+beta)+cos(beta+gamma)+cos(gamma+alpha)=p.Then the value of lim_(x->p/2)(root3 x+sqrtx+xsqrtx-sqrt(p+7))/(x^3-sqrt(p-1))equals

CENGAGE-COMPLEX NUMBERS-Single correct Answer
  1. If the argument of (z-a)(barz-b) is equal to that (((sqrt(3)+i)(1+sqrt...

    Text Solution

    |

  2. If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(ba...

    Text Solution

    |

  3. If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma, then (...

    Text Solution

    |

  4. The least value of |z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2) occurs when ...

    Text Solution

    |

  5. The roots of the equation x^(4)-2x^(2)+4=0 are the vertices of a :

    Text Solution

    |

  6. If z(1), z(2) are complex numbers such that Re(z(1))=|z(1)-2|, Re(z(2)...

    Text Solution

    |

  7. If z=e^((2pi i)/5), then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4...

    Text Solution

    |

  8. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  9. Let z be a complex number satisfying |z+16|=4|z+1|. Then

    Text Solution

    |

  10. If |z|=1 and z'=(1+z^(2))/(z), then

    Text Solution

    |

  11. a, b,c are three complex numbers on the unit circle |z|=1, such that a...

    Text Solution

    |

  12. If |z1|=|z2|=|z3|=1 then value of |z1-z3|^2+|z3-z1|^2+|z1-z2|^2 cannot...

    Text Solution

    |

  13. Number of ordered pairs (s), (a,b) of real numbers such that (a+ib)^(2...

    Text Solution

    |

  14. The region represented by the inequality |2z-3i|<|3z-2i| is

    Text Solution

    |

  15. If omega is any complex number such that z omega=|z|^(2) and |z-barz|+...

    Text Solution

    |

  16. If az^2+bz+1=0, where a,b in C, |a|=1/2 and have a root alpha such tha...

    Text Solution

    |

  17. Let p and q are complex numbers such that |p|+|q| lt 1. If z(1) and z(...

    Text Solution

    |

  18. If z and w are two complex numbers simultaneously satisfying te equati...

    Text Solution

    |

  19. All complex numbers 'z' which satisfy the relation |z-|z+1||=|z+|z-1||...

    Text Solution

    |

  20. If z(1), z(2) are two complex numbers such that |(z(1)-z(2))/(z(1)+z(2...

    Text Solution

    |