Home
Class 12
MATHS
The least value of |z-3-4i|^(2)+|z+2-7i|...

The least value of `|z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2)` occurs when `z=`

A

`1+3i`

B

`3+3i`

C

`3+4i`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of \( |z - (3 + 4i)|^2 + |z + (2 - 7i)|^2 + |z - (5 - 2i)|^2 \), we can follow these steps: ### Step 1: Define \( z \) Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. ### Step 2: Rewrite the expression We can rewrite the expression as: \[ |z - (3 + 4i)|^2 + |z + (2 - 7i)|^2 + |z - (5 - 2i)|^2 \] This becomes: \[ | (x - 3) + (y - 4)i |^2 + | (x + 2) + (y + 7)i |^2 + | (x - 5) + (y + 2)i |^2 \] ### Step 3: Expand each modulus Now, we expand each modulus squared: 1. \( |z - (3 + 4i)|^2 = (x - 3)^2 + (y - 4)^2 \) 2. \( |z + (2 - 7i)|^2 = (x + 2)^2 + (y + 7)^2 \) 3. \( |z - (5 - 2i)|^2 = (x - 5)^2 + (y + 2)^2 \) ### Step 4: Combine the expressions Combine these three expressions: \[ (x - 3)^2 + (y - 4)^2 + (x + 2)^2 + (y + 7)^2 + (x - 5)^2 + (y + 2)^2 \] ### Step 5: Simplify the combined expression Now, we simplify: \[ = (x^2 - 6x + 9 + y^2 - 8y + 16) + (x^2 + 4x + 4 + y^2 + 14y + 49) + (x^2 - 10x + 25 + y^2 + 4y + 4) \] Combine like terms: \[ = 3x^2 + 3y^2 - 12x + 10y + 78 \] ### Step 6: Complete the square Now, we complete the square for \( x \) and \( y \): 1. For \( x \): \[ 3(x^2 - 4x) = 3((x - 2)^2 - 4) = 3(x - 2)^2 - 12 \] 2. For \( y \): \[ 3(y^2 + \frac{10}{3}y) = 3\left((y + \frac{5}{3})^2 - \frac{25}{9}\right) = 3(y + \frac{5}{3})^2 - \frac{25}{3} \] ### Step 7: Substitute back Substituting back into the expression gives: \[ = 3(x - 2)^2 + 3\left(y + \frac{5}{3}\right)^2 + 78 - 12 - \frac{25}{3} \] \[ = 3(x - 2)^2 + 3\left(y + \frac{5}{3}\right)^2 + \frac{234 - 36 - 25}{3} \] \[ = 3(x - 2)^2 + 3\left(y + \frac{5}{3}\right)^2 + \frac{173}{3} \] ### Step 8: Find the minimum value The minimum value occurs when \( (x - 2)^2 = 0 \) and \( \left(y + \frac{5}{3}\right)^2 = 0 \), which gives: \[ x = 2, \quad y = -\frac{5}{3} \] Thus, \( z = 2 - \frac{5}{3}i \). ### Final Answer The least value of the expression occurs when: \[ z = 2 - \frac{5}{3}i \]

To find the least value of \( |z - (3 + 4i)|^2 + |z + (2 - 7i)|^2 + |z - (5 - 2i)|^2 \), we can follow these steps: ### Step 1: Define \( z \) Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. ### Step 2: Rewrite the expression We can rewrite the expression as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Least value of |z-2|+|z-4i| is

If m be the least value of |z-3+4i|^2+|z-5-2i|^2, z in C attained at z=z_0 , then the ordered pair (|z_0|,m) is equal to :

Find the least value of |z| for which |(z+2)/(z+i)|<=2

Let O=(0, 0), A=(3, 0), B=(0, -1) and C=(3, 2) , then the minimum value of |z|=|z-3|+|z+i|+|z-3-2i| occurs at the (where, z is complex number)

The minimum value of |Z-1+2i|+|4i-3-z| is

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

Find the greatest and least value of |z_(1)+z_(2)|=" if " z_(1)=24 + 7i and |z_(2)|=7

CENGAGE-COMPLEX NUMBERS-Single correct Answer
  1. If a complex number z satisfies |z|^(2)+(4)/(|z|)^(2)-2((z)/(barz)+(ba...

    Text Solution

    |

  2. If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma, then (...

    Text Solution

    |

  3. The least value of |z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2) occurs when ...

    Text Solution

    |

  4. The roots of the equation x^(4)-2x^(2)+4=0 are the vertices of a :

    Text Solution

    |

  5. If z(1), z(2) are complex numbers such that Re(z(1))=|z(1)-2|, Re(z(2)...

    Text Solution

    |

  6. If z=e^((2pi i)/5), then 1+z+z^(2)+z^(3)+5z^(4)+4z^(5)+4z^(6)+4z^(7)+4...

    Text Solution

    |

  7. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  8. Let z be a complex number satisfying |z+16|=4|z+1|. Then

    Text Solution

    |

  9. If |z|=1 and z'=(1+z^(2))/(z), then

    Text Solution

    |

  10. a, b,c are three complex numbers on the unit circle |z|=1, such that a...

    Text Solution

    |

  11. If |z1|=|z2|=|z3|=1 then value of |z1-z3|^2+|z3-z1|^2+|z1-z2|^2 cannot...

    Text Solution

    |

  12. Number of ordered pairs (s), (a,b) of real numbers such that (a+ib)^(2...

    Text Solution

    |

  13. The region represented by the inequality |2z-3i|<|3z-2i| is

    Text Solution

    |

  14. If omega is any complex number such that z omega=|z|^(2) and |z-barz|+...

    Text Solution

    |

  15. If az^2+bz+1=0, where a,b in C, |a|=1/2 and have a root alpha such tha...

    Text Solution

    |

  16. Let p and q are complex numbers such that |p|+|q| lt 1. If z(1) and z(...

    Text Solution

    |

  17. If z and w are two complex numbers simultaneously satisfying te equati...

    Text Solution

    |

  18. All complex numbers 'z' which satisfy the relation |z-|z+1||=|z+|z-1||...

    Text Solution

    |

  19. If z(1), z(2) are two complex numbers such that |(z(1)-z(2))/(z(1)+z(2...

    Text Solution

    |

  20. If z+1/z=2cos6^@ , then z^1000+1/[z^1000] +1 is equal to

    Text Solution

    |