Home
Class 12
MATHS
If |z|=1 and z ne +-1, then one of the p...

If `|z|=1` and `z ne +-1`, then one of the possible value of `arg(z)-arg(z+1)-arg(z-1)` , is

A

`-pi//6`

B

`pi//3`

C

`-pi//2`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a possible value of the expression \( \arg(z) - \arg(z+1) - \arg(z-1) \) given that \( |z| = 1 \) and \( z \neq \pm 1 \). ### Step-by-Step Solution: 1. **Use the property of arguments**: We can use the property of arguments that states: \[ \arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right) \] Therefore, we can rewrite the expression as: \[ \arg(z) - \arg(z+1) - \arg(z-1) = \arg\left(\frac{z}{(z+1)(z-1)}\right) \] 2. **Simplify the expression**: The expression inside the argument can be simplified: \[ (z+1)(z-1) = z^2 - 1 \] Thus, we have: \[ \arg\left(\frac{z}{z^2 - 1}\right) \] 3. **Use the modulus condition**: Since \( |z| = 1 \), we know that \( z \bar{z} = 1 \). Therefore, \( z^2 \bar{z}^2 = 1 \) implies \( |z^2| = 1 \) as well. This means: \[ |z^2 - 1| = |z^2| \cdot |1| = 1 \] We can express \( z^2 - 1 \) in terms of \( z \) and its conjugate: \[ |z^2 - 1| = |z - 1||z + 1| \] 4. **Express \( z^2 - 1 \)**: We can write: \[ z^2 - 1 = z^2 - z \bar{z} = z(z - \bar{z}) \] where \( z - \bar{z} = 2i \text{Im}(z) \) (as shown in the video). 5. **Find the argument**: Since \( z - \bar{z} = 2i \text{Im}(z) \), we can express: \[ \arg(z - \bar{z}) = \arg(2i \text{Im}(z)) = \frac{\pi}{2} \text{ or } -\frac{\pi}{2} \] Thus, we have: \[ \arg\left(\frac{z}{z^2 - 1}\right) = \arg(z) - \arg(z^2 - 1) \] 6. **Final value**: Since \( z \) lies on the unit circle, \( \arg(z) \) can be any angle \( \theta \). Therefore: \[ \arg(z) - \arg(z^2 - 1) = \theta - \left(\frac{\pi}{2} \text{ or } -\frac{\pi}{2}\right) \] This means the possible values of \( \arg(z) - \arg(z+1) - \arg(z-1) \) can be \( \frac{\pi}{2} \) or \( -\frac{\pi}{2} \). 7. **Conclusion**: Since the question asks for one of the possible values, we can conclude that: \[ \text{One of the possible values is } -\frac{\pi}{2}. \]

To solve the problem, we need to find a possible value of the expression \( \arg(z) - \arg(z+1) - \arg(z-1) \) given that \( |z| = 1 \) and \( z \neq \pm 1 \). ### Step-by-Step Solution: 1. **Use the property of arguments**: We can use the property of arguments that states: \[ \arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Matching Column|1 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Comprehension|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Write the value of arg(z)+arg(bar(z))

arg(bar(z))=-arg(z)

If z_1 = 3i and z_2 = -1 -i , find the value of arg z_1/z_2 .

If |z| = 1, z ne 1 , then value of arg ((1)/(1-z)) cannot exceed

arg((z)/(bar(z)))=arg(z)-arg(bar(z))

If pi/5 and pi/3 are the arguments of bar(z)_(1) and bar(z)_(2), then the value of arg(z_(1))+arg(z_(2)) is

If arg(z_(1))=(2pi)/3 and arg(z_(2))=pi/2 , then find the principal value of arg(z_(1)z_(2)) and also find the quardrant of z_(1)z_(2) .

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

CENGAGE-COMPLEX NUMBERS-Single correct Answer
  1. Let arg(z(k))=((2k+1)pi)/(n) where k=1,2,………n. If arg(z(1),z(2),z(3),…...

    Text Solution

    |

  2. Suppose two complex numbers z=a+ib, w=c+id satisfy the equation (z+w)/...

    Text Solution

    |

  3. If |z|=1 and z ne +-1, then one of the possible value of arg(z)-arg(z+...

    Text Solution

    |

  4. If arg(z^(3//8))=(1)/(2)arg(z^(2)+barz^(1//2)), then which of the foll...

    Text Solution

    |

  5. z(1), z(2) are two distinct points in complex plane such that 2|z(1)|=...

    Text Solution

    |

  6. If alpha, beta, gamma in {1,omega,omega^(2)} (where omega and omega^(2...

    Text Solution

    |

  7. The value of (3sqrt(3)+(3^(5//6))i)^(3) is (where i=sqrt(-1))

    Text Solution

    |

  8. If omega ne 1 is a cube root of unity and a+b=21, a^(3)+b^(3)=105, the...

    Text Solution

    |

  9. If z=(1)/(2)(sqrt(3)-i), then the least possible integral value of m s...

    Text Solution

    |

  10. If y(1)=max||z-omega|-|z-omega^(2)||, where |z|=2 and y(2)=max||z-omeg...

    Text Solution

    |

  11. Let I, omega and omega^(2) be the cube roots of unity. The least po...

    Text Solution

    |

  12. Number of imaginary complex numbers satisfying the equation, z^2=bar(z...

    Text Solution

    |

  13. Least positive argument ofthe 4th root ofthe complex number 2-isqrt(12...

    Text Solution

    |

  14. A root of unity is a complex number that is a solution to the equation...

    Text Solution

    |

  15. If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0. If ...

    Text Solution

    |

  16. Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, t...

    Text Solution

    |

  17. If z(1),z(2),z(3)………….z(n) are in G.P with first term as unity such th...

    Text Solution

    |

  18. If |z-1-i|=1, then the locus of a point represented by the complex num...

    Text Solution

    |

  19. Let z in C and if A={z:"arg"(z)=pi/4}and B={z:"arg"(z-3-3i)=(2pi)/3}. ...

    Text Solution

    |

  20. theta in [0,2pi] and z(1), z(2), z(3) are three complex numbers such t...

    Text Solution

    |