Home
Class 12
MATHS
If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...

If `S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!)`, then `S_(50)=`

A

`52!`

B

`1+49xx5!`

C

`52!-1`

D

`50xx51!-1`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `T_(n)=(n^(2)-n+1)n!`
`=(n^(2)-1)n!-(n-2)n!`
`T_(n)=(n-1)(n+1)!-(n-2)n!`
`:. S_(n)=1+(n-1)(n+1)!`
`:.S_(30)=1+49xx51!`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Examples|120 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.1|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S_(n)=1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+ upto n terms,then S_(n)=(n(n+1)^(2)(n+2))/(12)bS_(n)=(n(n-1)^(2)(n+2))/(12)c.S_(22)=3276dS_(22)=23275

If S_(n)=1+(1)/(2)+(1)/(2^(2))+...+(1)/(2^(n-1)) and 2-S_(n)<(1)/(100) then the least value of n must be :

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+2^(3)+.... rterms )/(2^(r)) then S_(-)n is equal to

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+......+2^(r))/(2^(r)), then S_(n) is equal to (a)2^(n)n-1( b) 1-(1)/(2^(n))(c)2n-1+(1)/(2^(n))(d)2^(n)-1

Let S_(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+......+(1)/(2^(n)-1) Then

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is

CENGAGE-PROGRESSION AND SERIES-Single correct Answer
  1. The sum of n terms of series ab+(a+1)(b+1)+(a+2)(b+2)+…+(a+(n-1)(b+(n-...

    Text Solution

    |

  2. sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (wh...

    Text Solution

    |

  3. The coefficient of x^(1274) in the expansion of (x+1)(x-2)^(2)(x+3)^(3...

    Text Solution

    |

  4. If the positive integers are written in a triangular array as shown be...

    Text Solution

    |

  5. The value of sum(i=1)^(n)sum(j=1)^(i)sum(k=1)^(j)=220 , then the value...

    Text Solution

    |

  6. The sum sum(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  7. The sum sum(k=1)^(10)underset(i lt j lt k)underset(j=1)(sum^(10))sum(i...

    Text Solution

    |

  8. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  9. The value of sum(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

    Text Solution

    |

  10. Find the sum of the infinte series (1)/(9)+(1)/(18)+(1)/(30)+(1)/(45)+...

    Text Solution

    |

  11. If sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26), then n equal to

    Text Solution

    |

  12. The sequence {x(k)} is defined by x(k+1)=x(k)^(2)+x(k) and x(1)=(1)/(2...

    Text Solution

    |

  13. The absolute value of the sum of first 20 terms of series, if S(n)=(n+...

    Text Solution

    |

  14. If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!), then S(50...

    Text Solution

    |

  15. If S(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, t...

    Text Solution

    |

  16. There is a certain sequence of positive real numbers. Beginning from t...

    Text Solution

    |

  17. The sequence {x(1),x(2),…x(50)} has the property that for each k, x(k)...

    Text Solution

    |

  18. Let a(0)=0 and a(n)=3a(n-1)+1 for n ge 1. Then the remainder obtained ...

    Text Solution

    |

  19. Suppose a(1),a(2),a(3),….,a(2012) are integers arranged on a cicle. Ea...

    Text Solution

    |

  20. The sum of the series (9)/(5^(2)*2*1)+(13)/(5^(3)*3*2)+(17)/(5^(4)*4*3...

    Text Solution

    |