Home
Class 12
MATHS
The value of sum(k=0)^(7)[(((7),(k)))/((...

The value of `sum_(k=0)^(7)[(((7),(k)))/(((14),(k)))sum_(r=k)^(14)((r ),(k))((14),(r ))]`, where `((n),(r ))` denotes `"^(n)C_(r )` is

A

`6^(7)`

B

greater than `7^(6)`

C

`8^(7)`

D

greater than `7^(8)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` `sum_(k=0)^(7)(('^(7)C_(k))/('^(14)C_(k))sum_(r=k)^(14)'^(r )C_(k)*^(14)C_(r ))`
`=sum_(k=0)^(7)(('^(7)C_(k))/(14!)xxk!(14-k)!sum_(r=k)^(14)(r !)/(k!(r-k)!)*(14!)/(r!(14-r)!))`
`=sum_(k=0)^(7)('^(7)C_(k)sum_(r=k)^(14)'^(14-k)C_(r-k))`
`=sum_(k=0)^(7)'^(7)C_(k)*2^(14-k)=2^(14)sum_(k=0)^(7)'^(7)C_(k)((1)/(2))^(k)`
`=2^(14)*(1+(1)/(2))^(7)=6^(7) gt 7^(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

sum_(k=m)^(n)kC_(r)

The value of sum_(r=0)^(n)C_(n-r)(n-r)sin((r pi)/(n))

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

The value of int_(0)^(1)(pi_(r=1)^(n)(x+r))(sum_(k=1)^(n)(1)/(x+k))dx

sum_(i=0)^(n)sum_(j=0)^(n)sum_(k=0)^(n)((n),(i))((n),(j))((n),(k)),((n),(r))=""^(n)C_(r) :

Prove that : sum_(i=0)^r((n+i),(k))=((n+r+1),(k+1))-((n),(k+1))

Let f(n)=(sum_(r=1)^(n)((1)/(r)))/(sum_(k=1)^(n)(k)/(2n-2k+1)(2n-k+1))

The value of (r.i)i+(r.j)j+(r.k)k is

The value of the expression (sum_(r=0)^(10)C_(r))(sum_(k=0)^(10)(-1)^(k)(^^10C_(k))/(2^(k))) is :