Home
Class 11
MATHS
[" In "Delta ABC" ,prove that "],[[" (i)...

[" In "Delta ABC" ,prove that "],[[" (i) "(a sin(B-C))/(b^(2)-c^(2))],[=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A)/(a^(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

In any triangle ABC, prove that : (a sin(B-C))/(b^2-c^2)= (b sin (C-A))/(c^2-a^2)= (c sin (A-B))/(a^2-b^2) .

In Delta ABC, prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(Ab^(2)c^(2))=sin^(2)A

In any /_\ABC ,prove that sin(B-C)/(sin(B+C))=(b^2-c^2)/(a^2)

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In Delta ABC, prove that (a^(2)sin (B-C))/(sin A) + (b^(2) sin (C-A))/(sin B) + (c^(2) sin (A-B))/(sin C) = 0

In any Delta ABC, prove that :(b^(2)-c^(2))sin^(2)A+(c^(2)-a^(2))sin^(2)B+(a^(2)-b^(2))sin^(2)C=0

In any triangle ABC, prove that : (sin(B-C))/(sin(B+C))= (b^2 -c^2)/a^2 .