Home
Class 12
MATHS
Prove that |[(b+c)^2, a^2, bc],[(c+a)^2...

Prove that ` |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Show that |[a^2,a^2-(b-c)^2,bc],[b^2,b^2-(c-a)^2,ca],[c^2,c^2-(a-b)^2,ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).

Prove the following: [[(b+c)^2,a^2,bc],[(c+a)^2,b^2,ca],[(a+b)^2,c^2,ab]] = (a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)

Prove that |(a^2,b^2+c^2,bc),(b^2,c^2+a^2,ca),(c^2,a^2+b^2,ab)|=-(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c),(c-a),(a-b)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

prove that , |{:(a,a^2,a^3+bc),(b,b^2,b^3+ca),(c,c^2,c^3+ab):}|=(a-b)(b-c)(c-a)(abc+bc+ca+ab)

Show that: abs(((b+c)^2,a^2,bc) , ((c+a)^2,b^2,ca) , ((a+b)^2,c^2,ab))=(a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)

Prove that [[b^2c^2, bc,b+c],[c^2a^2,ca,c+a],[a^2b^2,ab,a+b]] = 0