Home
Class 12
MATHS
The quadratic equation whose roots are ...

The quadratic equation whose roots are `(sqrt(2)+sqrt(3)i)/(sqrt(2)-sqrt(3)i)` and `(sqrt(2)-sqrt(3)i)/(sqrt(2)+sqrt(3)i)`
(A) ` 5x^(2)-2x+5=0`
(B) ` 5x^(2)+2x+5=0`
(C) `5x^(2)+2x-5=0`
(D) `5x^(2)-2x-5=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) then find x^(2)+y^(2)=?

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(2)), then x+y+xy=9(b)5(c)17(d)7, then

If x=((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) and y=((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))), find the value of (x^(2)+y^(2))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

2sqrt(3)x^(2)+x-5sqrt(3)=0

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

(6) sqrt(5)x^(2)-2sqrt(2)x-2sqrt(5)=0

((3)/(sqrt(5))x-5)+i2sqrt(5)y=sqrt(2)