Home
Class 12
MATHS
The length of the Latusrectum of the ell...

The length of the Latusrectum of the ellipse`3x^(2)+y^(2)=12` is `(lambda)/(sqrt(3))` then `lambda=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the latusrectum of the ellipse 16x^(2)+25y^(2)=400 is

the length of the latusrectum of the ellipse 5x^(2) + 9x^(2)=45, is

the length of the latusrectum of the ellipse (x^(2))/(36)+(y^(2))/(49)=1 , is

The length of the Latusrectum of the ellipse ((x-alpha)^(2))/(a^(2))+((y-beta)^(2))/(b^(2))=1 (a

The line y=x+lambda is a tangent to an ellipse 2x^(2)+3y^(2)=1 then

Find the locus of the point of intersection of the lines sqrt(3x)-y-4sqrt(3 lambda)=0 and sqrt(3)lambda x+lambda y-4sqrt(3)=0 for different values of lambda.

The locus of the point of intersection of the lines sqrt(3)x-y-4sqrt(3)lambda=0 and sqrt(3)lambda x+lambda y-4sqrt(3)=0 is a hyperbola of eccentricity 1 b.2 c.3 d.4

If cos48^(0)*cos12^(@)=(sqrt(5)+3)/(lambda) then lambda