Home
Class 11
MATHS
If a line y=3x+1 cuts the parabola x^2-4...

If a line `y=3x+1` cuts the parabola `x^2-4x-4y+20=0` at `Aa n dB ,` then the tangent of the angle subtended by line segment `A B` at the origin is `(8sqrt(3))/(205)` (b) `(8sqrt(3))/(209)` `(8sqrt(3))/(215)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(3)x^2+10x+8sqrt(3)

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

8sqrt((x)/(x+3))-sqrt((x+3)/(x))=2

The line 2y=3x+12 cuts the parabola 4y=3x^(2) . Where does the line cut the parabola ?

If the line y-sqrt(3)x+3=0 cuts the parabola y^(2)=x+2 at A and B, then find the value of PA.PB { where P=(sqrt(3),0)}

The line 2y=3x+12 cuts the parabola 4y=3x^(2) Where does the line cut the parabola ?

The shortest distance between the line yx=1 and the curve x=y^(2) is (A)(3sqrt(2))/(8) (B) (2sqrt(3))/(8) (C) (3sqrt(2))/(5) (D) (sqrt(3))/(4)

The latus rectum of the conic 3^(2)+4y^(2)-6x+8y-5=0 is 3b.(sqrt(3))/(2)c(2)/(sqrt(3))d. none of these