Home
Class 11
MATHS
If two chords drawn from the point A(4,4...

If two chords drawn from the point `A(4,4)` to the parabola `x^2=4y` are bisected by the line `y=m x ,` the interval in which `m` lies is (a) `(-2sqrt(2),2sqrt(2))` (b) `(-oo,-sqrt(2))uu(sqrt(2),oo)` (c) `(-oo,-2sqrt(2)-2)uu(2sqrt(2)-2,oo)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all real numbers x for which x^2-|x+2|+x >0 is (a)(-oo,-2)uu(2,oo) (b) (-oo,-sqrt(2))uu(sqrt(2),oo) (c)(-oo,-1)uu(1,oo) (d) (sqrt(2),oo)

The value of sqrt(2sqrt(2sqrt(2...oo)))

The set of all real numbers x for which x^(2)-|x+2|+x>0 is (-oo,-2) b.(-oo,-sqrt(2))uu(sqrt(2),oo) c.(-oo,-1)uu(1,oo) d.(sqrt(2),oo)

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

lim_(x rarr oo)((sqrt(x^(2)+5)-sqrt(x^(2)-3))/(sqrt(x^(2)+3)-sqrt(x^(2)+1)))

The length of the chord of the parabola y^(2)=x which is bisected at the point (2,1) is (a) 2sqrt(3)( b) 4sqrt(3)(c)3sqrt(2) (d) 2sqrt(5)

Let (y^2-5y+3)(x^2+x+1)lt2x for all xepsilonR then the interval in which y lies is (A) ((5-sqrt(5))/2,(5+sqrt(5))/2) (B) (-oo,-2] (C) [-2,-2/3] (D) (1,4)

If |x-2| (A) x in R , (B) x in[0,oo)] , (C) x in(-oo,(4-sqrt(2))/(2)]uu[(5)/(2),oo), (D) x in(-oo,(4-sqrt(2))/(2)]uu[(5+sqrt(3))/(2),oo]

The domain of the function f(x)=sqrt(10-sqrt(x^(4)-21x^(2))) is [5,oo)b[-sqrt(21),sqrt(21)]c.[-5,-sqrt(21)]uu[sqrt(21),5]uu{0]d(-oo,-5)

lim_(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)