Home
Class 11
MATHS
Two straight lines are perpendicular to ...

Two straight lines are perpendicular to each other. One of them touches the parabola `y^2=4a(x+a)` and the other touches `y^2=4b(x+b)` . Their point of intersection lies on the line. `x-a+b=0` (b) `x+a-b=0` `x+a+b=0` (d) `x-a-b=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line (x)/(l)+(y)/(m)=1 touches the parabola y^(2)=4a(x+b) then m^(2)(l+b)=

If the line x+by+c=0(bc!=0) touches both the parabolas y^(2)=4x and x^(2)=-32y then b+c=

If the line x+by+c=0(bc!=0) touches both the parabolas y^(2)=4x and x^(2)=-32y then b+c=

If the line x+by+c=0(bc!=0) touches both the parabolas y^(2)=4x and x^(2)=-32y then b+c=

Let the parabolas y=x(c-x)and y=x^(2)+ax+b touch each other at the point (1,0), then-

Prove that the line x/l+y/m=1 touches the parabola y^2=4a(x+b) , if m^2(l+b)+al^2=0 .

If the line x+by+c=0( bc!=0 ) touches both the parabolas y^(2)=4x and x^(2)=-32y then b+c=

Let the parabolas y= x^(2)+ ax +b and y =x(c-x) touch cach other at point (1,0). Then

The line 4x-7y+10=0 intersects the parabola,y^(2)=4x at the points A&B .The co- ordinates of the point of intersection of the tangents drawn at the points A&B are: