Home
Class 11
MATHS
The circle x^2+y^2+2lambdax=0,lambda in ...

The circle `x^2+y^2+2lambdax=0,lambda in R ,` touches the parabola `y^2=4x` externally. Then, `lambda>0` (b) `lambda<0` `lambda>1` (d) none of these

A

`lamdagt0`

B

`lamdalt0`

C

`lamdagt1`

D

none of these

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the given circle and the parabola to determine the conditions on the parameter \( \lambda \) such that the circle touches the parabola externally. ### Step 1: Identify the Circle and Parabola The equation of the circle is given by: \[ x^2 + y^2 + 2\lambda x = 0 \] This can be rewritten as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The circle x^(2)+y^(2)+2lamdax=0,lamdainR , touches the parabola y^(2)=4x externally. Then,

The circle x^(2)+y^(2)+2lamdax=0,lamdainR touches the parabola y^(2)=4x externally. Then

If the circle x^(2)+y^(2)+2ax=0, a in R touches the parabola y^(2)=4x , them

The given circle x^(2)+y^(2)+2px=0 , p in R touches the parabola y^(2)=-4x externally then p =

The circle x^(2)+y^(2)+4 lambda x=0 which lambda in R touches the parabola y^(2)=8x The value of lambda is given by

If x+y+1 = 0 touches the parabola y^(2) = lambda x , then lambda is equal to

If 2x+y+lambda=0 is a normal to the parabola y^(2)=-8x, then lambda is 12 (b) -12 (c) 24 (d) -24

The line 4y-3x+lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 then lambda=