Home
Class 12
MATHS
The following integral int(pi/4)^(pi/2)(...

The following integral `int_(pi/4)^(pi/2)(2cos e cx)^(17)dx` is equal to `(a)int_0^("log"(1+sqrt(2)))2(e^u+e^(-u))^(16)d u` `(b)int_0^("log"(1+sqrt(2)))2(e^u+e^(-u))^(17)d u` `(c)int_0^("log"(1+sqrt(2)))2(e^u-e^(-u))^(17)d u` `(d)int_0^("log"(1+sqrt(2)))2(e^u-e^(-u))^(16)d u`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)1/(sin2x)dx\ is equal to (log)_e3 b. (log)_"e"sqrt(3) c. 1/2log(-1) d. log(-1)

int_(pi//6)^(pi//3)1/(sin2x)dx\ is equal to a. (log)_e3 b. (log)_"e"sqrt(3) c. 1/2log(-1) d. log(-1)

If u_(n)=int_(0)^((pi)/(2))x^(n)sin xdx then u_(10)+90u_(8) is equal to

int (du) / (u sqrt (u ^ (2) -1))

int_(2)^(3)u sqrt(5-u)du

int_(log sqrt(pi//2))^(log sqrt(pi))(e^(2x)sec^(2)((1)/(3)e^(2x)))dx=

If int_(log2)^(x) (du)/((e^(u)-1)^(1/2)) = pi/6 , then e^(x) =