Home
Class 11
MATHS
Tangent to the curve y=x^2+6 at a point ...

Tangent to the curve `y=x^2+6` at a point `(1,7)` touches the circle `x^2+y^2+16x+12y+c=0 `at a point `Q`, then the coordinates of `Q` are (A) `(-6,-11)` (B) `(-9,-13)` (C) `(-10,-15)` (D) `(-6,-7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangent to the curve y=x^(2)+6 at a point P(1, 7) touches the circle x^(2)+y^(2)+16x+12y+c=0 at a point Q. Then the coordinates of Q are

S straight line with slope 2 and y-intercept 5 touches the circle x^(2)+y^(2)=16x+12y+c=0 at a point Q Then the coordinates of Q are (-6,11)(b)(-9,-13)(-10,-15)(d)(-6,-7)

A straight line with slope 2 and y-intercept 5 touches the circle x^(2)+y^(2)+16x+12y+c=0 at a point Q. Then the coordinates of Q are (-6,11)(b)(-9,-13)(-10,-15)(d)(-6,-7)

The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle x^(2)+y^(2)+18x+14y+lambda=0 at Q. The coordinates of point Q are

The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touches the circle x^(2)+y^(2)-8x+6y+20=0 at the point