Home
Class 11
MATHS
The equation of the line(s) parallel to ...

The equation of the line(s) parallel to `x-2y=1` which touch(es) the circle `x^2+y^2-4x-2y-15=0` is (are) (a)`x-2y+2=0` (b) `x-2y-10=0` (c)`x-2y-5=0` (d) 3`x-y-10=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the line(s) parallel to x-2y=1 which touch(es) the circle x^(2)+y^(2)-4x-2y-15=0 is (are) (a)x-2y+2=0 (b) x-2y-10=0 (c) x-2y-5=0 (d) 3x-y-10=0

A line parallel to the line x-3y=2 touches the circle x^(2)+y^(2)-4x+2y-5=0 at the point

The line 4y - 3x + lambda =0 touches the circle x^2 + y^2 - 4x - 8y - 5 = 0 then lambda=

The line 4y - 3x + lambda =0 touches the circle x^2 + y^2 - 4x - 8y - 5 = 0 then lambda=

The line 4y - 3x + lambda =0 touches the circle x^2 + y^2 - 4x - 8y - 5 = 0 then lambda=

The line 4y-3x+lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 then lambda=

The points of intersection of the line 4x-3y-10=0 and the circle x^(2)+y^(2)-2x+4y-20=0 are

The equation of the circle which cuts orthogonally the three circles x^2+y^2+4x+2y+1=0, 2x^2+2y^2+8x+6y-3=0, x^2+y^2+6x-2y-3=0 is

The equation of the circle which cuts orthogonally the three circles x^2+y^2+4x+2y+1=0, 2x^2+2y^2+8x+6y-3=0, x^2+y^2+6x-2y-3=0 is

Find the equation of the circle which cuts the circles x^2+y^2+4x+2y+1=0, 2(x^2+y^2)+8x+6y-3=0 and x^2+y^2+6x-2y-3=0 orthogonally.