Home
Class 11
MATHS
Prove that sum(r=1)^(m-1)(2r^2-r(m-2)+1)...

Prove that `sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=-1/mdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)(.^n C_r)=1/n .

Prove that sum_(r=1)^(n)(-1)^(r-1)(1+(1)/(2)+(1)/(3)+...+(1)/(r))^(n)C_(r)=(1)/(n)

Prove that sum_(r=0)^n(-1)^r^n C_r[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u ptomt e r m s]=(2^(m n)-1)/(2^(m n)(2^n-1))

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot