Home
Class 11
MATHS
If the conics whose equations are S1:(si...

If the conics whose equations are `S_1:(sin^2theta)x^2+(2htantheta)x y+(cos^2theta)y^2+32 x+16 y+19=0` `S_1:(sin^2theta)x^2-(2h^(prime)cottheta)x y+(sin^2theta)y^2+16 x+32 y+19=0` intersect at four concyclic points, where `theta[0,pi/2],` then the correct statement(s) can be `h+h^(prime)=0` (b) `h-h^(prime)=0` `theta=pi/4` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the conics whose equations are S_1:(sin^2theta)x^2+(2htantheta)x y+(cos^2theta)y^2+32 x+16 y+19=0 S_2:(cos^2theta)x^2-(2h^(prime)cottheta)x y+(sin^2theta)y^2+16 x+32 y+19=0 intersect at four concyclic points, where theta[0,pi/2], then the correct statement(s) can be (a) h+h^(prime)=0 (b) h-h^(prime)=0 (c) theta=pi/4 (d) none of these

If the conics whose equations are S_1:(sin^2theta)x^2+(2htantheta)x y+(cos^2theta)y^2+32 x+16 y+19=0 S_2:(cos^2theta)x^2-(2h^(prime)cottheta)x y+(sin^2theta)y^2+16 x+32 y+19=0 intersect at four concyclic points, where theta[0,pi/2], then the correct statement(s) can be (a) h+h^(prime)=0 (b) h-h^(prime)=0 (c) theta=pi/4 (d) none of these

If the conics whose equations are S_(1):(sin^(2)theta)x^(2)+(2h tan theta)xy+(cos^(2)theta)y^(2)+32x+16y+19=0S_(1):(sin^(2)theta)x^(2)-(2h'cot theta)xy+(sin^(2)theta)y^(2)+16x+32y+19=0 intersect at four concyclic points,where theta epsilon[0,(pi)/(2)], then the correct statement(s) can be h+h'=0 (b) h-h'=0 theta=(pi)/(4)(d) none of these

If the conics whose equations are S-=sin^2thetax^2+2h x y+cos^2thetay^2+32 x+16 y+19=0,S^(prime)-=cos^2thetax^2+2h^(prime)x y+s in^2thetay^2+16 x+32y+19=0 intersect at four concyclic points, then, (where theta in R) h+h^(prime)=0 (b) h=h ' h+h^(prime)=1 (d) none of these

If the conics whose equations are S-=sin^2thetax^2+2h x y+cos^2thetay^2+32 x+16 y+19=0,S^(prime)-=cos^2thetax^2+ 2h^(prime)x y+sin^2thetay^2+16 x+32y+19=0 intersect at four concyclic points, then, (where theta in R) (a) h+h^(prime)=0 (b) h=h ' (c) h+h^(prime)=1 (d) none of these

If the conics whose equations are S-=sin^(2)theta x^(2)+2hxy+cos^(2)theta y^(2)+32x+16y+19=0,S'-=cos^(2)theta x^(2)+2h'xy+sin^(2)theta y^(2)+16x+32y+19=0 intersect at four concyclic points,then,(where theta in R)h+h'=0(b)h=h'h+h'=1(d) none of these

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if