Home
Class 12
MATHS
lim(x->0)(e^log(2^x-1)^x-(2^x-1)^(x)*sin...

`lim_(x->0)(e^log(2^x-1)^x-(2^x-1)^(x)*sinx))/(e^(xlogx))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal to

lim_(x rarr0)(log(e^(x^(2)+2sqrt(x))))/(tan sqrt(x)) is equal to 0 b.1 c.2 d.e^(2)

lim_(x->0) (2e^sinx-e^(-sinx)-1)/(x^2+2x)

lim""_(xto3)(e^(x-3)-x+1)/(x^(2)-log(x-2)) is equal to

lim_(x rarr0)(e^(x)+log(1+x)-(1-x)^(-2))/(x^(2))

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(x to 0) (27^(x)-9^(x)-3^(x)+1)/(log_(e)(1+(x^(2))/(2))) is equal to -