Home
Class 12
MATHS
lim(x->oo)(pi/2-tan^(- 1)x)^(1/ x) is e...

`lim_(x->oo)(pi/2-tan^(- 1)x)^(1/ x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

lim_(x rarr oo)((pi)/(2)-tan^(-1)x)^((1)/(x)) is equal to

(lim)_(x->oo)((2tan^(-1)x)/pi)^x

The value of lim_(x to oo)((pi)/(2)-tan^(-1)x)^(x//1) is

lim_(xrarr0)[tan(x+(pi)/(4))]^(1//x) is equal to

lim_(x rarr oo)((tan x)/(x^(2)-x)) is equal to

lim_(x-1)(tan(x^(2)-1))/(x-1) is equal to

The value of lim_(x rarr oo)((pi)/(2)-tan^(-1)x)^((1)/(x^(2))), is

lim_(x->oo) (e^(1/x^2)-1)/(2tan^-1(x^2)-pi) is equal to (a) 1 (b) -1 (c) 1/2 (d) -1/2

lim_(x rarr oo)sec^(-1)((x)/(x+1)) is equal to: