Home
Class 11
MATHS
The expression (sqrt(2x^2+1)+sqrt(2x^2-1...

The expression `(sqrt(2x^2+1)+sqrt(2x^2-1))^6+(2/((sqrt(2x^2+1)+sqrt(2x^2-1))^))^6` is polynomial of degree `6` b. `8` c. `10` d. `12`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(6)+((2)/((sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(square)))^(6) is polynomial of degree 6 b.8 c.10 d.12

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

Degree of the polynomial [sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+sqrt(x^2-1))]^8 is.

Degree of the polynomial [sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+sqrt(x^2-1))]^8 is.

The no. of terms in (x + sqrt(x^2 - 1))^6 + (x -sqrt(x^2 - 1))^6

Express: ((x+sqrt(x^2+1))^6+ (x-sqrt(x^2+1))^6) as a polynomial in x

The expression (sqrt(x^(3)-1)+x^(2))^(11)-(sqrt(x^(3)-1)-x^(2))^(11) is a polynomial of degree

Solve (sqrt2+1)^x +(sqrt2-1)^x = 6 .