Home
Class 14
MATHS
If log3=0. 477\ and\ (1000)^x=3, then x ...

If `log3=0. 477\ and\ (1000)^x=3,` then `x` equals a. `0. 0159` b. `0. 0477` c. `0. 159` d. `10`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log3=0.477backslash and backslash(1000)^(x)=3, then x equals a.0.0159b.0.0477c..159d.10

If log x-5log3=-2 then x equals a.0.8 b.0.81 c.1.25 d.2.43

If log_(10)125+log_(10)8=x, then backslash x is equal to a.(1)/(3) b.0.064 c.-3 d.3

If log_(10) 3=1.4771 and log_(10) 7=0.8451, then the value of log_(10)(23 1/3) is equal to a. 0. 368 b. 1. 368 c. 1. 356 d. 1. 477

If log_(2)[log_(3)(log_(2)x)]=1, then x is equal to a.0 b.12 c.128d.512

If log_(10)2=0.3010backslash and log_(10)3=0.4771 then the value of log_(10)1.5 is a.0.1761b0.7116c..7161d.0.7611

If log2=0.301 and log3=0.477, find the value of log(3.375).

If log2=0.301 and log3=0.477, find the value of log(3.375).

If log2=0.301 and log3=0.477, find the value of log(3.375).