Home
Class 10
MATHS
tantheta /(1-cottheta ) + cottheta/(1-ta...

`tantheta /(1-cottheta ) + cottheta/(1-tan theta)= 1+sectheta*cosectheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+secthetacosectheta

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (iii) (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta cosectheta

Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta

Prove the following tantheta/(1-cottheta) +cottheta/(1-tantheta) =sectheta.cosectheta+1=1+tantheta+cottheta

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

tantheta/(1-cottheta)+cottheta/(1-tantheta)=1+tantheta+cottheta .

Prove: (tantheta)/(1- cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

Prove the following identities,where the angles involves are acute angles for which the expressions are defined:(iii) tantheta/(1-Cottheta)+Cottheta/(1-tantheta)=Sectheta Cosectheta+1