Home
Class 9
MATHS
The factors of 8a^3+b^3-6a b+1 are (a)...

The factors of `8a^3+b^3-6a b+1` are (a) `(2a+b-1)(4a^2+b^2+1-3a b-2a)` (b)`(2a-b+1)(4a^2+b^2-4a b+1-2a+b)` (c)`(2a+b+1)(4a^2+b^2+1-2a b-b-2a)` (d)`(2a-1+b)(4a^2+1-4a-b-2a b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The factors of 8a^(3)+b^(3)-6ab+1 are (a) (2a+b-1)(4a^(2)+b^(2)+1-3ab-2a) (b) (2a-b+1)(4a^(2)+b^(2)-4ab+1-2a+b)(2a+b+1)(4a^(2)+b^(2)+1-2ab-b-2a) (d) (2a-1+b)(4a^(2)+1-4a-b-2ab)

Simplify: a^2b(a-b^2)+a b^2(4a b-2a^2)-a^3b(1-2b)

Simplify: a^2b(a^3-a+1)-a b(a^4-2a^2+2a)-b(a^3-a^2-1)

If x+2 is a factor of x^2+a x+2b and a+b=4 , then (a) a=1, b=3 (b) a=3, b=1 (c) a=-1, b=5 (d) a=5, b=-1

Simplify: -1/2a^2b^2c+1/3a b^2c-1/4a b c^2-1/5c b^2a^2+1/6c b^2a-1/7c^2a b+1/8c a^2bdot

If x+2 is a factor of x^2+a x+2b and a+b=4 , then (a) a=1,\ b=3 (b) a=3,\ b=1 (c) a=-1,\ b=5 (d) a=5,\ b=-1

If (a^(4)-2a^(2)b^(2)+b^(4))^(x-1)=(a-b)^(3)(a+b)^(-2) then x=