Home
Class 11
MATHS
If 2x+y+lambda=0 is a normal to the para...

If `2x+y+lambda=0` is a normal to the parabola `y^2=-8x ,` then `lambda` is 12 (b) `-12` (c) 24 (d) `-24`

A

12

B

-12

C

24

D

-24

Text Solution

Verified by Experts

(3) y=mx+c is a normal to `y^(2)=4ax` if `c=-2am-am^(3)`,
`y=-2x-lamda` (Given normal)
`:." "m=-2,a=-2`
`or-lamda=-2an-am^(3)=-2(-2)(-2)-(-2)(-2)^(3)=-24`
`orlamda=24`
Promotional Banner

Similar Questions

Explore conceptually related problems

For the parabola y^(2)+8x-12y+20=0

If the line 2x-2y+lambda=0 is a secant to the parabola x^(2)=-8y, then lambda lies in the interval (4,oo)(b)(-oo,4)(c)(0,4)(d)Noneofthese

If x+y+1 = 0 touches the parabola y^(2) = lambda x , then lambda is equal to

If x+y=k is a normal to the parabola y^(2)=12x then it touches the parabola y^(2)=px then

x+y-9=0 is a normal to the parabola curve y^(2)-2y-8x+17=0 at (a,b) then a+b is equal to

If x+y=k is a normal to the parabola y^(2)=12x, then it touches the parabola y^(2)=px then |P| =

The number of normal (s) to the parabola y^(2)=8x through (2,1) is (B) 2(A)1(D)3(C)0

The circle x^(2)+y^(2)+2 lambda x=0,lambda in R, touches the parabola y^(2)=4x externally.Then,lambda>0 (b) lambda 1(d) none of these